Температура обратки в автономной СО

Отопление придумано для того, что бы в зданиях было тепло, происходил равномерный прогрев помещения. При этом конструкция, обеспечивающая тепло должна быть удобной в эксплуатации и ремонте. Отопительная система – это набор деталей и оборудования, служащих для обогрева помещения. Она состоит:

  1. Источник, создающий тепло.
  2. Трубомагистрали (подачи и обратки).
  3. Нагревательные элементы.


Тепло распространяется от исходной точки его создания к нагревательному блоку при помощи теплоносителя. Это может быть: вода, воздух, пар, антифриз и т.д. Самые применяемые жидкие теплоносителем, то есть водяные системы. Они практичны, так как для создания тепла применяется всевозможный тип топлива, так же способны решить проблему обогрева различных строений, ведь существует реально много схем обогрева, различных по свойствам и стоимости. Так же имеют высокую безопасность эксплуатации, продуктивность и оптимальное использование всего оборудования в целом. Но какой бы сложностью не обладали бы системы отопления, их объединяет один и тот же принцип действия.

Коротко об обратке и подачи в системе отопления

Система водяного отопления с помощью подачи от котла подает разогретый теплоноситель к батареям, которые расположены внутри здания. Это дает возможность распределять тепло по всему дому. Затем теплоноситель, то есть вода или антифриз, пройдя по всем имеющимся радиаторам, теряет свою температуру и подается обратно для нагрева.

Самая незамысловатая структура отопления представляет собой нагреватель, две магистрали, расширительный бак и набор радиаторов. Тот водовод, по которому нагретая вода от нагревателя движется к батареям, называется подачей. А водовод, который расположен внизу радиаторов, где вода, теряет свою изначальную температуру возвращается обратно, так и будет называться- обраткой. Так как, нагреваясь, вода расширяется, то система предусматривает специальный бачок. Он решает две задачи: запас воды, что бы насыщать систему; принимает лишнюю воду, которая получается при расширении. Вода, как носитель тепла направляется от котла к радиаторам и назад. Ее течение обеспечивает насос, или естественная циркуляция.

Подача и обратка присутствует в одно и двух трубчатой системе отопления. Но в первой не существует четкого распределения на подающую и обратную трубу, а всю трубную магистраль условно делят пополам. Колонну, которая выходит от котла, называют подачей, а колонну, выходящую с последнего радиатора – обраткой.

В однотрубчатой магистрали нагретая вода из котла последовательно течет из одной батареи в другую, теряя свою температуру. Поэтому в самом конце батареи будут самими холодными. Это главный и, наверное, единственный минус такой системы.

А вот плюсов однотрубный вариант наберет больше: необходимы меньшие затраты на приобретения материалов по сравнению с 2-х трубной; схема имеет более привлекательный вид. Трубу легче спрятать, а так же можно проложить трубы под дверными проемами. Двухтрубная более эффективна – параллельно в систему вмонтированы две арматуры (подача и обратка).

Такая система специалистами считается более оптимальной. Ведь ее работа зыблется на подаче горячей воды по одной трубе, а охлажденную воду отводят в обратном направлении по другой трубе. Радиаторы в таком случае подключаются параллельно, что обеспечивает равномерность их нагрева. Какая из них устанавливает подход должен быть индивидуальным, учитывая при этом множество различных параметров.

Необходимо соблюдать только несколько общих советов:

  1. Вся магистраль должна быть целиком заполнена водой, воздуха это помеха, если трубы завоздушены, качество отопления плохое.
  2. Необходимо поддерживалась достаточно большая скорость циркуляции жидкости.
  3. Разница температур подачи и обратки должна составлять около 30 градусов.

В чем состоит разница между подачей и обраткой отопления

И так, подведем итоги, чем же отличаются между собой подача и обратка в отоплении:

  • Подача – теплоноситель, который идет по водоводам из источника тепла. Этом может быть индивидуальный котел или центральное отопления дома.
  • Обратка — это вода, которая пройдя путь по всех батареям отопления, уходит обратно к источнику тепла. Поэтому на входе системы — подача, на выходе- обратка.
  • Отличается так же температурой. Подача горячее, чем обратка.
  • Способом установки. Тот водовод, который крепится, к верхней части батареи – это подача; тот, что, подключается к нижней части — является обраткой.

И так, подведем итоги, чем же отличаются между собой подача и обратка в отоплении:

  • Подача – теплоноситель, который идет по водоводам из источника тепла. Этом может быть индивидуальный котел или центральное отопления дома.
  • Обратка — это вода, которая пройдя путь по всех батареям отопления, уходит обратно к источнику тепла. Поэтому на входе системы — подача, на выходе- обратка.
  • Отличается так же температурой. Подача горячее, чем обратка.
  • Способом установки. Тот водовод, который крепится, к верхней части батареи – это подача; тот, что, подключается к нижней части — является обраткой.

Для начала рассмотрим простую схему:

На схеме мы видим котел, две трубы, расширительный бак и группу радиаторов отопления. Красная труба, по которой горячая вода идет от котла к радиаторам называется- ПРЯМОЙ. А нижняя (синяя) труба по которой более холодная вода возвращяется обратно, так и называется- ОБРАТНОЙ. Зная, что при нагреве все тела расширяются (вода в том числе) в нашу систему вмонтирован расширительный бак. Он выполняет сразу две функции: является запасом воды для подпитки системы и в него уходят излишки воды при расширении от нагрева. Вода в данной системе является теплоносителем и поэтому должна циркулировать от котла к радиаторам и обратно. Заставить ее циркулировать может либо насос, либо, при некоторых условиях, сила земной гравитации. Если с насосом все понятно, то с гравитацией у многих могут возникнуть сложности и вопросы. Им мы посвятили отдельную тему. Для более глубокого понимания процесса обратимся к цифрам. К примеру теплопотери дома составляют 10 квт. Режим работы системы отопления стабильный, то есть система ни разогревается, ни остывает. В доме температура не повышается и не понижается.Это значит, что 10 квт вырабатывает котел и 10 квт рассеивают радиаторы. Из школьного курса физики мы знаем, что на нагрев 1 кг воды на 1 градус нам потребуется 4,19 кдж тепла Если мы будем каждую секунду нагревать 1 кг воды на 1 градус, то нам понадобится мощность

Q=4,19*1(кг)*1(град)/1(сек)=4,19 квт.

Если наш котел имеет мощность 10 квт то он может нагреть в секунду 10/4,2=2,4 килограмма воды на 1 градус или 1 килограмм воды на 2,4 градуса, либо 100 грамм воды (не водки) на 24 градуса. Формула для мощности котла выглядит так:

Qкот=4,19*G*(Tвых-Твх) (квт),

где
G- расход воды через котел кг/сек
Твых- температура воды на выходе из котла (можно Т прямой)
Твх- температура воды на входе в котел (можно Т обратной)
Радиаторы тепло рассеивают и количество теплоты которое они отдают зависит от коэффициента теплоотдачи, площади поверхности радиатора и разности температур между стенкой радиатора и воздухом в комнате. Формула выглядит так:

Qрад=k*F*(Трад-Твозд),

где
k-коэффициент теплоотдачи. Величина для бытовых радиаторов практически постоянная и равная k=10ватт/(кв метр*град).
F- суммарная площадь радиаторов (в кв. метрах)
Трад-средняя температура стенки радиатора
Твозд- температура воздуха в комнате.
При стабильном режиме работы нашей системы всегда будет выполняться равенство

Qкот=Qрад

Рассмотрим подробнее работу радиаторов с применением рассчетов и цифр.
Допустим суммарная площадь их оребрения равна 20 кв метров,(что приблизительно соответствует 100 ребрам). Наши 10 квт=10000вт эти радиаторы отдадут при разнице температур в

dT=10000/(10*20)=50 градусов

Если температура в комнате равна 20 градусам, то средняя температура поверхности радиатора будет

20+50=70 градусов.

В случае когда наши радиаторы имеют большую площадь, например 25 квадратных метров (где-то 125 ребер) то

dT=10000/(10*25)=40 градусов.

И средняя температура поверхности составит

20+40=60 градусов.

Отсюда вывод: Если хотите сделать низкотемпературную систему отопления не скупитесь на радиаторы. Средняя температура есть среднеарифмитическое между температурами на входе в радиаторы и выходе.

Тср=(Тпрям+Тобр)/2;

Разница же температур между прямой и обраткой тоже немаловажная величина и характеризует циркуляцию воды через радиаторы.

dT=Тпрям-Тобр;

Помним, что

Q=4,19*G*(Тпр-Тобр)=4,19*G*dT

При неизменной мощности увеличение расхода воды через прибор приведет к снижению dT и наоборот при снижении расхода dT увеличится. Если задаться, что dT в нашей системе составляет 10 градусов, то в первом случае когда Тср=70 градусов после несложных вычислений получим Тпр=75 град и Тобр=65 град. Расход воды через котел равен

G=Q/(4,19*dT)=10/(4,19*10)=0,24 кг/сек.

Если мы уменьшим расход воды ровно в два раза, а мощность котла оставим прежней, то разница температур dT возрастет в два раза. В предыдущем примере мы задавались dT в 10 градусов, таперь при уменьшении расхода она станет dT=20 градусов. При неизменной Тср=70, мы получим Тпр-80 град и Тобр=60 град. Как видим уменьшение расхода воды влечет за собой повышение температуры прямой и снижение температуры обратки. В случаях, когда расход снижается до какой-то критической величины мы можем наблюдать закипание воды в системе. (температура кипения=100 градусов) Так же закипание воды может происходить при переизбытке мощности котла. Явление это крайне нежелательное и очень опасное, поэтому хорошо спроектированная и продуманная система, грамотный подбор оборудования и качественный монтаж это явление исключает.

Как видим из примера температурный режим системы отопления зависит от мощности, которую нужно передать помещению, площади радиаторов и расхода теплоносителя. Объем же теплоносителя залитый в систему при стабильном режиме ее работы не играет никакой роли. Единственное на что влияет объем так это на динамику системы, то есть на время разогрева и остывания. Чем он больше, тем и время разогрева дольше и тем дольше время остывания, что несомненно в некоторых случаях является плюсом. Осталось рассмотреть работу системы в этиъх режимах.
Вернемся к нашему примеру с 10 квтным котлом и радиаторами в 100 ребер с 20 квадратами площади. Насос задает расход в G=0,24 кг/сек. Емкость системы зададим в 240 литров.
К примеру в дом после долгого отсутствия приехали хозяева и начали топить. Дом за время их отсутствия остыл до 5 градусов, как и вода в системе отопления. Включив насос, мы создадим циркуляцию воды в системе, но пока котел не разожжен температура прямой и обратки будет равна одинакова и равна 5 градусов. После розжига котла и выхода его на мощность в 10 квт картина будет следующая: Температура воды на входе в котел будет 5 градусов, на выходе из котла 15 градусов, температура на входе в радиаторы 15 градусов, а на выходе из них чуть меньше 15.(При таких температурах радиаторы практически ничего не излучают) Все это будет продолжаться 1000 секунд, пока насос не прокачает всю воду через систему и к котлу не придет обратка с температурой в почти 15 градусов. После этого котел уже будет выдавать 25 градусов, а радиаторы возвращать в котел воду с температурой чуть менее 25 (примерно 23-24 градуса). И так опять 1000 секунд.
В конце концов система прогреется до 75 градусов на выходе, а радиаторы будут возвращать 65 градусов и система перейдет в стабильный режим. Если бы в системе было 120 литров, а не 240, то система прогрелась бы в 2 раза быстрее. В случае, когда котел потушили, а система горячая, начнется процесс остывания. То есть система будет отдавать дому накопленное тепло. Ясно, что чем больше объем теплоносителя тем дольше будет происходить этот процесс. При эксплуатации твердотопливных котлов это позволяет растянуть время между дозагрузками. Чаще всего эту роль на себя берет , которому мы посвятили отдельную тему. Как и различным видам систем отопления.

Когда осень уверенно шагает по стране, за Полярным кругом летит снег, а на Урале ночные температуры держатся ниже 8 градусов, то уместно звучит словоформа «отопительный сезон». Народ вспоминает минувшие зимы и пытается разобраться в норме температуры теплоносителя в системе отопления.

Предусмотрительные владельцы индивидуальных строений заботливо ревизуют клапаны и форсунки котлов. Жильцы многоквартирного дома к 1 октября ждут, как Деда Мороза, слесаря-водопроводчика из управляющей компании. Повелитель вентилей и задвижек приносит тепло, а с ним — радость, веселье и уверенность в завтрашнем дне.

Путь гигакалории

Мегаполисы сверкают высотными домами. Над столицей висит туча реновации. Глубинка молится на пятиэтажки. Пока не снесли, в доме работает система подачи калорий.

Отопление многоквартирного дома экономкласса производится через централизованную систему подачи тепла. Трубы входят в подвальное помещение строения. Подача носителя тепла регулируется вводными задвижками, после которых вода попадает в грязевики, а оттуда раздается по стоякам, а с них подаётся в батареи и радиаторы, обогревающие жильё.

Количество задвижек коррелирует с количеством стояков. При выполнении ремонтных работ в отдельно взятой квартире существует возможность отключения одной вертикали, а не всего дома.

Отработавшая жидкость частично уходит по обратной трубе, а частично подаётся в сеть горячего водоснабжения.

Градусы здесь и там

Воду для обогревательной конфигурации готовят на ТЭЦ или в котельной. Нормы температуры воды в системе отопления прописаны в строительных правилах: компонент должен быть разогрет до 130-150 °С.

Подачи рассчитывается с учетом параметров наружного воздуха. Так, для региона Южный Урал принимается к расчету минус 32 градуса.

Чтобы жидкость не закипела, её надо в сеть подавать под давлением 6-10 кгс. Но это теория. Фактически большинство сетей работает на 95-110 °С, так как сетевые трубы большинства населённых пунктов изношены и высокое давление порвёт их как тузик грелку.

Растяжимое понятие — норма. Температура в квартире никогда не равна первичному показателю носителя тепла. Здесь выполняет энергосберегающую функцию элеваторный узел — перемычка между прямой и обратной трубой. Нормы температуры теплоносителя в системе отопления по обратке зимой допускают сохранение тепла на уровне 60 °С.

Жидкость из прямой трубы попадает в сопло элеватора, перемешивается с обратной водой и опять уходит в домовую сеть на обогрев. Температура носителя за счет подмешивания обратки понижается. Что влияет на вычисление количества тепла, потреблённого жилыми и подсобными помещениями.

Горяченькая пошла

Температура горячей воды по санитарным правилам в точках разбора должна лежать в диапазоне 60-75 °С.

В сети теплоноситель подаётся с трубы:

  • зимой — с обратной, чтобы не шпарить пользователей кипятком;
  • летом — с прямой, так как в летнее время носитель нагревают не выше 75 °С.

На составляется температурный график. Средняя суточная температура обратной воды не должна превышать график более чем на 5 % ночью и 3 % днём.

Параметры раздающих элементов

Одной из деталей согревания жилища является стояк, через который теплоноситель приходит в батарею или радиатор из Нормы температуры теплоносителя в системе отопления требуют нагрева в стояке в зимнее время в диапазоне 70-90 °С. Фактически градусы зависят от выходных параметров ТЭЦ или котельной. В летнее время, когда горячая вода нужна только для стирки и душа, диапазон перемещается в интервал 40-60 °С.

Наблюдательные люди могут заметить, что в соседней квартире элементы обогрева горячее или холоднее, чем в его собственной.

Причина разницы температур стояка отопления заключается в способе раздачи ГВС.

В однотрубной конструкции носитель тепла может раздаваться:

  • сверху; тогда температура на верхних этажах выше, чем на нижних;
  • снизу, тогда картина меняется на противоположную — снизу горячее.

В двухтрубной системе градус одинаковый на всём протяжении, теоретически 90 °С на прямом и 70 °С на обратном направлении.

Теплая, как батарея

Предположим, что конструкции центральной сети надёжно заизолированы по всей трассе, ветер не гуляет по чердакам, лестничным клеткам и подвалам, двери и окна в квартирах добросовестные хозяева утеплили.

Предположим, что теплоноситель в стояке соответствует нормативам строительных правил. Остаётся узнать, какая норма температуры батарей отопления в квартире. Показатель учитывает:

  • параметры наружного воздуха и время суток;
  • расположение квартиры в плане дома;
  • жилое или подсобное помещение в квартире.

Поэтому внимание: важно, не каков градус обогревателя, а каков градус воздуха в помещении.

Днём в угловых комнатах градусник должен показывать не менее 20 °С, а в центрально расположенных комнатах допускается 18 °С.

Ночью в жилище допустим воздух 17 °С и 15 °С соответственно.

Теория языкознания

Название «батарея» — бытовое, обозначающее ряд одинаковых предметов. Применительно к согреванию жилья это ряд обогревающих секций.

Нормы температуры батарей отопления допускают нагрев не выше 90 °С. По правилам детали, нагретые выше 75 °С, ограждают. Это не значит, что их надо обшивать фанерой или закладывать кирпичом. Обычно ставят решетчатое ограждение, не препятствующее циркуляции воздуха.

Распространены чугунные, алюминиевые и биметаллические устройства.

Выбор потребителя: чугун или алюминий

Эстетика чугунных радиаторов — притча во языцех. Они требуют периодической покраски, так как правила предусматривают, чтобы рабочая поверхность имела гладкую поверхность и позволяла легко удалить пыль и грязь.

На шершавой внутренней поверхности секций образуется грязный налет, уменьшающий теплоотдачу прибора. Но технические параметры чугунных изделий на высоте:

  • мало подвержены водной коррозии, могут эксплуатироваться более 45 лет;
  • обладают высокой тепловой мощностью на 1 секцию, поэтому компактны;
  • инертны в передаче тепла, поэтому хорошо сглаживают температурные перепады в комнате.

Другой тип радиаторов изготовлен из алюминия. Легкая конструкция, окрашенная в заводских условиях, не требует покраски, удобна в уходе.

Но есть недостаток, затмевающий достоинства, — коррозия в водной среде. Конечно, внутреннюю поверхность обогревателя изолируют пластиком для избегания контакта алюминия с водой. Но плёнка может повредиться, тогда начнётся химическая реакция с выделением водорода, при создании избыточного давления газа алюминиевый прибор может лопнуть.

Нормы температуры радиаторов отопления подчиняются тем же правилам, что и батареи: важен не столько нагрев металлического предмета, сколько нагрев воздуха в помещении.

Чтобы воздух хорошо прогревался, должен быть достаточный съём тепла с рабочей поверхности обогревающего конструктива. Поэтому категорически не рекомендуется повышать эстетику комнаты щитами перед нагревательным прибором.

Обогрев лестничной клетки

Раз уж речь зашла о многоквартирном доме, то следует упомянуть лестничные клетки. Нормы температуры теплоносителя в системе отопления гласят: градусная мера на площадках не должна опускаться ниже 12 °С.

Конечно, дисциплина жильцов требует закрывать плотно двери входной группы, не оставлять раскрытыми фрамуги лестничных окон, сохранять стёкла в целостности и оперативно сообщать в управляющую компанию о неполадках. Если УК не примет вовремя меры по утеплению точек вероятных потерь тепла и соблюдению температурного режима в доме, поможет заявление на перерасчёт стоимости услуг.

Изменения в конструкции обогрева

Замену существующих отопительных приборов в квартире производят с обязательным согласованием с управляющей компанией. Самовольное изменение элементов согревающего излучения может нарушить тепловой и гидравлический баланс строения.

Начнётся отопительный сезон, будет зафиксировано изменение температурного режима в других квартирах и площадках. Технический осмотр помещений выявит самовольное изменение типов отопительных приборов, их количества и величины. Неизбежна цепочка: конфликт — суд — штраф.

Поэтому ситуация разрешается так:

  • если заменяются не старые на новые радиаторы того же типоразмера, то это делается без дополнительных согласований; единственное, за чем обратиться в УК, — за отключением стояка на время ремонта;
  • если новые изделия существенно отличаются от установленных при строительстве, то полезно взаимодействовать с управляющей компанией.

Приборы учета тепла

Вспомним ещё раз о том, что сеть подачи тепла многоквартирного дома обустроена узлами учёта тепловой энергии, которые фиксируют и потребленные гигакалории, и кубатуру воды, пропущенную через внутридомовую линию.

Чтобы не удивляться счетам, содержащим нереальные суммы за тепло при градусах в квартире ниже нормы, до начала отопительного сезона уточните в управляющей компании, в рабочем ли состоянии прибор учета, не нарушен ли график поверки.

В статье мы затронем проблемы, связанные с давлением и диагностируемые манометром. Мы построим ее в форме ответов на часто задаваемые вопросы. Обсуждаться будет не только перепад между подачей и обраткой в элеваторном узле, но и падение давления в системе отопления закрытого типа, принцип работы расширительного бака и многое другое.

Давление — не менее важный параметр отопления, чем температура.

Центральное отопление

Как работает элеваторный узел

На входе элеватора стоят задвижки, отсекающие его от теплотрассы. По их ближним к стене дома фланцам проходит раздел зон ответственности между жилищниками и поставщиками тепла. Вторая пара задвижек отсекает элеватор от дома.

Подающий трубопровод всегда вверху, обратка — внизу. Сердце элеваторного узла — узел смешения, в котором расположено сопло. Струя более горячей воды из подающего трубопровода вливается в воду из обратного, вовлекая ее в повторный цикл циркуляции через контур отопления.

Регулируя диаметр отверстия в сопле, можно менять температуру смеси, поступающей в .

Строго говоря, элеватор — не помещение с трубами, а вот этот узел. В нем вода с подачи смешивается с водой обратного трубопровода.

Какой перепад между подающим и обратным трубопроводами трассы

  • В штатном режиме работы он составляет около 2-2,5 атмосфер. Типично в дом поступает 6-7 кгс/см2 на подаче и 3,5-4,5 на обратке.

Обратите внимание: на выходе из ТЭЦ и котельной перепад больше. Его снижают как потери за счет гидравлического сопротивления трасс, так и потребители, каждый из которых представляет собой, упрощенно говоря, перемычку между обеими трубами.

  • Во время испытаний на плотность насосы накачивают в оба трубопровода не менее 10 атмосфер. Испытания проводятся холодной водой при перекрытых входных задвижках всех подключенных к трассе элеваторов.

Какой перепад в системе отопления

Перепад на трассе и перепад в системе отопления — две абсолютно разные вещи. Если давление обратки до и после элеватора не отличается, то вместо подачи в дом поступает смесь, давление которой превышает показания манометра на обратке всего на 0,2- 0,3 кгс/см2. Это соответствует перепаду высоты в 2-3 метра.

Этот перепад тратится на преодоление гидравлического сопротивления розливов, стояков и отопительных приборов. Сопротивление определяется диаметром каналов, по которым движется вода.

Какого диаметра должны быть стояки, розливы и подводки к радиаторам в многоквартирном доме

Точные значения определяются гидравлическим расчетом.

В большинстве современных домов применяются следующие сечения:

  • Розливы отопления делаются из трубы ДУ50 — ДУ80.
  • Для стояков используется труба ДУ20 — ДУ25.
  • Подводка к радиатору делается либо равной диаметру стояка, либо на шаг тоньше.

Нюанс: занижать диаметр подводки относительно стояка при монтаже отопления своими руками можно только при наличии перемычки перед радиатором. Причем врезана она должна быть в более толстую трубу.

На фото — более здравое решение. Диаметр подводки не занижен.

Что делать, если температура обратного трубопровода слишком мала

В таких случаях:

  1. Рассверливается сопло . Его новый диаметр согласуется с поставщиком тепла. Увеличенный диаметр не только поднимет температуру смеси, он увеличит и перепад. Циркуляция через отопительный контур ускорится.
  2. При катастрофической нехватке тепла элеватор разбирается, сопло изымается, а подсос (труба, соединяющая подачу с обраткой) глушится .
    В систему отопления поступает вода из подающего трубопровода напрямую. Температура и перепад давлений резко увеличиваются.

Обратите внимание: это крайняя мера, на которую можно пойти только при риске разморозки отопления. Для нормальной работы ТЭЦ и котельных важна фиксированная температура обратки; заглушив подсос и сняв сопло, мы поднимем ее как минимум на 15-20 градусов.

Что делать, если температура обратки слишком велика

  1. Штатная мера — заварить сопло и рассверлить его заново, уже меньшим диаметром.
  2. Когда нужно срочное решение без остановки отопления — перепад на входе в элеватор уменьшается с помощью запорной арматуры. Это можно сделать входной задвижкой на обратке, контролируя процесс по манометру.
    У этого решения есть три недостатка:
    • Давление в системе отопления вырастет. Мы ведь ограничиваем отток воды; нижнее давление в системе станет ближе к давлению подачи.
    • Износ щечек и штока задвижки резко ускорится: они будут находиться в турбулентном потоке горячей воды с взвесями.
    • Всегда есть вероятность падения изношенных щечек. Если они полностью перекроют воду, отопление (прежде всего подъездное) будет разморожено в течение двух-трех часов.

Зачем нужно большое давление в трассе

Действительно, в частных домах с автономными системами отопления используется избыточное давление всего в 1,5 атмосферы. И, разумеется, большее давление означает, куда большие расходы на более прочные трубы и питание нагнетающих насосов.

Необходимость в большем давлении связана с этажностью многоквартирных домов. Да, для циркуляции нужен минимальный перепад; но ведь воду нужно поднять до уровня перемычки между стояками. Каждая атмосфера избыточного давления соответствует водяному столбу в 10 метров.

Зная давление в трассе, нетрудно вычислить максимальную высоту дома, который может быть отоплен без применения дополнительных насосов. Инструкция по расчету проста: 10 метров умножаются на давление обратки. Давление обратного трубопровода в 4,5 кгс/см2 соответствует водяному столбу в 45 метров, что при высоте одного этажа в 3 метра даст нам 15 этажей.

К слову, горячее водоснабжение подается в многоквартирных домах из того же элеватора — с подачи (при температуре воды не выше 90 С) или обратки. При недостатке давления верхние этажи останутся без воды.

Автономное отопление

Зачем нужен расширительный бачок

Вмещает избыток расширившегося теплоносителя при его нагреве. Без расширительного бака давление может превысить прочность трубы на разрыв. Бак состоит и стальной бочки и мембраны из резины, которая отделяет воздух от воды.

Воздух, в отличие от жидкостей, хорошо сжимается; при увеличении объема теплоносителя на 5% давление в контуре благодаря воздушной емкости вырастет незначительно.

Объем бака обычно берется примерно равным 10% общего объема отопительной системы. Цена этого устройства невелика, так что покупка не будет разорительной.

Правильный монтаж бачка — подводкой вверх. Тогда в него не попадет лишний воздух.

Почему в закрытом контуре уменьшается давление

Почему падает давление в системе отопления закрытого типа?

Ведь воде некуда деться!

  • При наличии в системе автоматических воздушников через них будет выходить растворенный на момент заполнения в воде воздух.
    Да, он составляет небольшую часть объема теплоносителя; но ведь большого изменения объема и не нужно, чтобы манометр отметил изменения.
  • Пластиковые и металлопластиковые трубы могут незначительно деформироваться под влиянием давления. В сочетании с высокой температурой воды этот процесс ускорится.
  • В системе отопления падает давление при снижении температуры теплоносителя. Тепловое расширение, помните?
  • Наконец, незначительные утечки легко увидеть лишь в централизованном отоплении по ржавым следам. Вода в замкнутом контуре не столь богата железом, да и трубы в частном доме чаще всего не стальные; поэтому увидеть следы мелких течей в том случае, если вода успевает испаряться, почти невозможно.

Чем опасно падение давления в замкнутом контуре

Выходом из строя котла. В старых моделях без термоконтроля — вплоть до взрыва. В современных старших моделях часто присутствует автоматический контроль не только температуры, но и давления: когда оно падает ниже порогового значения, котел сообщает о неполадке.

В любом случае лучше поддерживать давление в контуре на уровне примерно полутора атмосфер.

Как замедлить падение давления

Чтобы не подпитывать систему отопления раз за разом каждый день, поможет простая мера: поставьте второй расширительный бак большего объема.

Внутренние объемы нескольких бачков суммируются; чем больше суммарное количество воздуха в них — тем меньшее падение давления вызовет уменьшение объема теплоносителя на, скажем, 10 миллилитров в сутки.

Где поставить расширительный бак

В общем-то, большой разницы для мембранного бака нет: он может быть подключен в любой части контура. Производители, однако, рекомендуют подключать его там, где течение воды максимально близко к ламинарному. При наличии в системе я бачок можно смонтировать на прямом участке трубы перед ним.

Надеемся, что интересовавший вас вопрос не остался без внимания. Если это не так — возможно, нужный ответ вы сможете найти в видео в конце статьи. Теплых зим!

Закладка Постоянная ссылка.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *